Quality Guideline

Ausbildung

Six Sigma Green Belt Training

Version: 2.3

Stand: 23.09.2021

Inhalt

Vo	orwort		3
	Hintergründe		3
	Entstehung		3
	Änderungen		3
	Frühere Ausgaben		4
	Abkürzungen		4
	Begriffe		4
1	Anwendungsbereich		4
2	Einleitung		5
3	Dauer der Ausbildung		5
4	Trainingsinhalte, projekt	tphase norientiert	5
	4.1 Kick-off (K)		5
	4.2 DEFINE (D)		5
	4.3 MEASURE (M)		6
	4.4 ANALYSE (A)		6
	4.5 IMPROVE (I)		7
	4.6 CONTROL (C)		7
5	Umfang und Ziele der einzelnen Themen		8
	5.1 Legende zur Klassif	fizierung	8
		ür den Umfang (Vermittlung)	8
	5.1.2 Klassifizierung de		8
	_	Six Sigma Green Belt Training	9
6	Empfohlene Zusatzqualif	tikation	11

Vorwort

Hintergründe

Diese Richtlinie stellt die gegenwärtige Diskussion um Standards in der Six Sigma Expertenausbildung in den historischen Kontext des Ausbildungsdiskurses der letzten 20 Jahre, in dem zunehmend die Inhalte und Dauer der Ausbildung und die dabei erreichte Vermittlungstiefe beliebig von den ausbildenden Unternehmen festgelegt wurden. Dabei standen bei der Trainingsentwicklung nicht selten, konträr zur abschließend erreichten Qualifikation der Trainingsteilnehmer, ausschließlich wirtschaftliche Interessen der ausbildenden Unternehmen im Focus.

Die ungewollten Nebenwirkungen dieses Bildungsansatzes sind in der Anzahl stark reduzierte Ausbildungsstunden, was am Ausbildungsende in der Summe zu einer nicht ausreichenden Vermittlungstiefe der Themen führt.

Die Folgen sind nicht ausreichendes Knowhow bei der Projektarbeit und eine mangelnde Vergleichbarkeit des Expertenwissens auf dem Markt. Somit ist es einem Auftraggeber kaum möglich die unterschiedlichen Qualifikationen richtig einzuschätzen.

In der Praxis haben sich zudem die Anforderungen an das Knowhow an eine zum Six Sigma Green Belt ausgebildeten Fachkraft stark verändert.

Bis vor einigen Jahren wurde unter einem Green Belt eine Person verstanden, die innerhalb eines Green Belt Projektes bestimmte unterstützende Funktionen ausübt. Heute wird unter einem Green Belt eine Person verstanden, die durch eine erweiterte Ausbildung in der Lage sein soll, als Six Sigma Projektleiter, unter Einsatz weniger komplexer Analysetools, zu fungieren. Bei Bedarf zieht er für komplexere Analysen einen Black Belt oder Master Black Belt zu Rate.

In dieser Funktion führt er das Team organisatorisch und methodisch, erstellt notwendige Analysen ggf. mit Unterstützung eines Coaches und berichtet den Projektfortschritt an den/die Auftraggeber/Prozesseigner/ Sponsoren bzw. an das zuständige Gremium.

Entstehung

Als Basis für diese Richtlinie hat der Vorstand des European Six Sigma Club - Deutschland e.V. im Vorfeld der Six Sigma Fachkonferenz im März 2008 eine Liste der Trainingsinhalte erarbeitet, die die Mindestanforderungen für ein Six Sigma Green Belt Training beschreiben.

In der Folge wurde daraus, zusammen mit den Vereinsmitgliedern, ein Qualitätsstandard erarbeitet, der auf einer Klausurtagung im November 2008 in Kassel abschließend verfeinert wurde.

Auf eben dieser Klausurtagung wurden die Mindestanforderungen als Qualitätsrichtlinie des European Six Sigma Club -Deutschland e.V. freigegeben und verbindlich gesetzt.

Änderungen

Gegenüber der Version vom 19.07.2017 wurden folgende Änderungen vorgenommen:

- a) Anpassung des Dokumentenlayouts auf das neue Design
- b) Ergänzung Data-Mining Aufbaukurs (Empfohlene Zusatzausbildung)

Frühere Ausgaben

Version vom 19.07.2017

Version vom 22.11.2014

Version vom 28.08.2012

Version vom 15.08.2011

Version vom 14.12.2008

Abkürzungen

6S	Six Sigma
ANOVA	Analysis of Variance
ВВ	Black Belt
C&E	Cause and Effect
DMAIC	Define – Measure – Analyse – Improve – Control
ESSC-D	European Six Sigma Club Deutschland e.V.
GB	Green Belt
K	Kick-off
MBB	Master Black Belt
SIPOC	Supplier – Input – Process – Output - Control
SMBB	Senior Master Black Belt
VOC	Voice of Customer

Begriffe

Quality Guideline	Richtlinie zur Sicherstellung der gewünschten Qualität im Ergebnis
Sponsor	In der Regel ein Mitglied des mittleren Managements. Unterstützt
	Projektleiter und -team bei der Abarbeitung der Aufgaben.

1 Anwendungsbereich

Die Richtlinie beschreibt die Mindestanforderung an die Ausbildung zum Six Sigma Green Belt. Art, Umfang und Vermittlungstiefe werden klassifiziert beschrieben und dienen dem Abgleich mit bestehenden oder neu zu entwickelnden Trainings.

Werden die unten beschriebenen Kriterien von der zu bewertenden Ausbildung erfüllt, so ist dies die Basisvoraussetzung für die Zertifizierung des Experten zum Six Sigma Green Belt nach den Richtlinien des European Six Sigma Club Deutschland e.V.

2 Einleitung

Die nun folgende Richtlinie ist nach Projektphasen und in einen allgemeinen Teil gegliedert, was aber nicht bedeutet, dass die Werkzeuge in der angegebenen Phase geschult werden müssen.

Da viele Tools in mehreren Phasen genutzt werden können, liegt es in der Verantwortung des Trainers, die Inhalte entsprechend der angewendeten Didaktik zum passenden Zeitpunkt zu vermitteln.

3 Dauer der Ausbildung

Für die Ausbildung zum Six Sigma Green Belt sind für die Vermittlung der in der Folge beschriebenen Inhalte und die Erreichung der erforderlichen Vermittlungstiefe, mindestens 8 Unterrichtstage, mit mindestens 80 Unterrichtseinheiten (UE) á 45 Minuten plus Pausen, zu absolvieren.

Typisch sind hier 10 Unterrichtstage mit in Summe 100 Unterrichtseinheiten á 45 Minuten plus Pausen.

An Hochschulen ist es zulässig die erforderliche Vermittlungstiefe durch Aufteilung der Unterrichtseinheiten auf Präsenzzeit (Vorlesung) und anteiliges Selbststudium zu erreichen. Der maximal zulässige Anteil von Selbststudium beträgt 25% der Gesamtunterrichtseinheiten, dabei ist der Minimalumfang des oben beschriebenen Standardtrainings (80UE) die Basis. Die in Selbststudium zu leistenden Unterrichtseinheiten werden mit dem Faktor drei berechnet. Für die Six Sigma Green Belt Ausbildung ergeben sich damit, bei maximaler Ausnutzung des Selbststudiumanteils von 25% und minimaler Anzahl von Unterrichtseinheiten, 60 Unterrichtseinheiten Präsenzzeit und zusätzlich 60 Unterrichtseinheiten (20x3) Selbststudium.

Für die Ausgabe einer Teilnahmebescheinigung an den Teilnehmer muss dieser mindestens 85% der für dieses Training geplanten Gesamtstundenzahl anwesend gewesen sein.

4 Trainingsinhalte, projektphasenorientiert

4.1 Kick-off (K)

- Six Sigma Hintergründe und Grundlagen
- DMAIC-Phasenstruktur
- Grundlagen des Projektmanagements

4.2 DEFINE (D)

- Aufgabenblatt (auch Projektauftrag, Teamcharter, Projectcharter genannt)
- SIPOC
- VOC (Voice of Customer)

4.3 MEASURE (M)

- Grundlagen der Statistik (Mittelwert, Median, Spannweite, Standardabweichung, Varianz, Bestimmung von Anteilen)
- Histogramm
- Boxplot
- Zeitreihendiagramm (Verlaufsdiagramm)
- Regelkarte (Control Chart)
- Pareto-Diagramm
- Multivari-Chart (Haupteffekt und Wechselwirkung)
- Streudiagramm (auch XY-Diagramm oder Scatterplot genannt)
- Matrixplot
- Flussdiagramm
- Output-/Inputsammlung
- Ishikawa-Diagramm (Fischgräten-Diagramm, Ursachen-/Wirkungsdiagramm, C&E Diagram)
- Ursachen-/Wirkungsmatrix (auch C&E-Matrix genannt)
- Datenerhebungsplan
- Messsystemanalyse (für Messwerte und Attribute)
- Verteilungstest (z.B. Normalverteilungstest)
- Prozessfähigkeitsanalyse (für kontinuierliche Daten)
- Sigma Niveau Berechnung (Sigma Level)

4.4 ANALYSE (A)

- Konfidenzintervall
- Test auf Varianzgleichheit (zwei oder mehr Stichproben)
- t-Test für zwei Stichproben
- Einfache Varianzanalyse (one-Way-ANOVA)
- Chi-Quadrat-Test
- Korrelationsanalyse
- Einfache lineare und nicht-lineare Regression

4.5 IMPROVE (I)

- Brainstorming
- Entscheidungsmatrix
- FMEA für Lösungsrisiken
- Maßnahmenplan
- Datenanalyse der Lösungspilotierung
- Prozessfähigkeit der Lösungspilotierung

4.6 CONTROL (C)

- Datenanalyse der Lösung (vorher/nachher)
- Hypothesentests der Lösung (vorher/nachher)
- Prozessfähigkeit der Lösung (vorher/nachher)
- Einzelwert-Regelkarte
- zweispurige Mittelwert/Streuungskarte (Xquer/R oder Xquer/s)
- Regel- (Control) plan
- Projektabschlussbericht (incl. Standardisierung)
- Erfahrungsbericht

5 Umfang und Ziele der einzelnen Themen

Die oben definierten Themen, Methoden und Tools beschreiben welche Inhalte für das Training mindestens gefordert sind. In diesem Abschnitt werden der Umfang und die Ziele dieser Themen anhand von Klassifizierungen spezifiziert. Das Ergebnis des jeweiligen Trainings muss die benannte Klasse oder höhere erreichen, um der Guideline zu entsprechen.

5.1 Legende zur Klassifizierung

5.1.1 Klassifizierung für den Umfang (Vermittlung)

Klasse	Bedeutung
Α	Methode wurde erklärt
В	Methode wurde gemeinsam genutzt
С	Methode wurde allein oder in Gruppe geübt
D	Methode wurde geübt inkl. Feedback zur Übung

5.1.2 Klassifizierung der Ziele

Klasse	Bedeutung
1	Der Teilnehmer hat das Prinzip der Anwendung verstanden
2	"1" und Teilnehmer kann Tool auswählen & anwenden
3	"2" und Teilnehmer kann wichtige Ergebnisse interpretieren
4	"3" und Teilnehmer kennt detailliert die Berechnungshintergründe
5	"4" und Teilnehmer kann Ergebnis auch von Hand errechnen

5.2 Klassifizierung für Six Sigma Green Belt Training

Thema	Phase	Umfang (Vermittlung)	Ziel
Six Sigma Hintergründe und Grundlagen	K	Α	1
DMAIC-Phasenstruktur	K	Α	1
Grundlagen des Projektmanagements	K	Α	2
Aufgabenblatt (auch Projektauftrag, Teamcharter, Projectcharter genannt)	D	D	2
SIPOC	D	D	2
VOC (Voice of Customer)	D	Α	1
Grundlagen der Statistik (Mittelwert, Median, Spannweite, Standardabweichung, Varianz, Bestimmung von Anteilen)	M	С	5
Histogramm	М	С	3
Boxplot	М	С	4
Zeitreihendiagramm (Verlaufsdiagramm)	М	С	3
Regelkarte (Control Chart)	М	С	3
Pareto-Diagramm	M	С	4
Multivari-Chart (Haupteffekt und Wechselwirkung)	M	С	5
Streudiagramm (auch XY-Diagramm oder Scatterplot genannt)	M	С	4
Matrixplot	M	С	3
Flussdiagramm	M	С	3
Output-/Inputsammlung	M	D	3
Ishikawa-Diagramm (Fischgräten-Diagramm, Ursachen-/Wirkungsdiagramm, C&E Diagramm)	M	В	3
Ursachen-/Wirkungsmatrix (auch C&E-Matrix genannt)	М	В	5
Datenerhebungsplan	М	С	2
Messsystemanalyse (für Messwerte und Attribute)	М	D	3
Verteilungstest (z.B. Normalverteilungstest)	М	D	3
Prozessfähigkeitsanalyse (für kontinuierliche Daten)	М	С	3

Sigma Niveau Berechnung (Sigma Level)	М	В	3
Konfidenzintervall	Α	С	3
Test auf Varianzgleichheit (zwei oder mehr Stichproben)	Α	С	3
t-Test für zwei Stichproben	Α	С	3
Einfache Varianzanalyse (one-Way-ANOVA)	Α	В	3
Chi-Quadrat-Test	Α	В	3
Korrelationsanalyse	Α	С	3
Einfache lineare und nicht-lineare Regression	Α	D	3
Brainstorming	1	В	2
Entscheidungsmatrix	1	Α	3
FMEA für Lösungsrisiken	1	Α	2
Maßnahmenplan	1	Α	2
Datenanalyse der Lösungspilotierung	I	Α	3
Prozessfähigkeit der Lösungspilotierung	1	Α	3
Datenanalyse der Lösung (vorher/nachher)	С	Α	3
Hypothesentests der Lösung (vorher/nachher)	С	С	3
Prozessfähigkeit der Lösung (vorher/nachher)	С	В	3
Einzelwert-Regelkarte	С	В	3
zweispurige Mittelwert/Streuungskarte (Xquer/R oder Xquer/s)	С	В	3
Regel-(Control-) plan	С	Α	2
Projektabschlussbericht (incl. Standardisierung)	С	Α	2
Erfahrungsbericht	С	Α	2

6 Empfohlene Zusatzqualifikation

Die Digitalisierung verändert neben unserem sozialen Umfeld auch unsere Art und Weise zu kommunizieren und zu arbeiten. Der entscheidende Wert der Digitalisierung liegt hierbei nicht in der Steigerung von Komfort und Effizienz, im verbesserten Umgang mit Ressourcen, im Umweltschutz oder in der Prozessoptimierung. Er zeigt sich vielmehr in dem enormen Zugewinn an Transparenz und Daten, der es ermöglicht, den Prozess des Lernens und der kontinuierlichen Verbesserung zu initiieren, zu automatisieren und auf eine neue Stufe zu heben.

Die sich durch die Digitalisierung ergebenden Möglichkeiten und Herausforderungen haben längst auch in Six Sigma Einzug erhalten. Es stehen nicht nur mehr Daten aus einer zunehmenden Anzahl von Quellen unterschiedlicher Qualität in immer kürzerer Zeit zur Verfügung, sondern auch die Möglichkeiten zur Prozessoptimierung und -kontrolle haben sich erweitert. Der ESSC-D Arbeitskreis "Six Sigma Weitergedacht" hat branchenübergreifend fundierte Erfahrungen gesammelt, den Six-Sigma-Werkzeugkasten auf den Prüfstand gestellt und essenzielle Werkzeuge für den zukunftssicheren Belt und all diejenigen, die sich für das Qualitätsmanagement im Zeitalter der Digitalisierung und von Big Data interessieren, ergänzt.

Dazu gehören unter anderem:

- unterschiedliche Methoden des Projektmanagements
- Aufbereiten strukturierter und unstrukturierter Daten sowie großer Datenmengen
- Visualisierungsmöglichkeiten komplexerer Datenstrukturen
- gängige Methoden der Data Science (oder des Data-Mining)
- Möglichkeiten und Grenzen von Künstlicher Intelligenz (KI) und Maschinellem Lernen (ML)
- Anwenden und Nutzen entwickelter Zusammenhangsmodelle

Weitere Informationen und empfohlene Ausbildungstiefen können hier im Detail nachgelesen werden: https://www.sixsigmaclub.de/download/ESSCD QualityGuideLine DM Aufbaukurs DE.pdf

"Lernen ist wie Rudern gegen den Strom. Hört man damit auf, treibt man zurück."

(Laozi, chinesischer Philosoph, 6. Jh. v. Chr.)

